
HTML5 Research Journal
by Ciarán McCann

Introduction
For this project I have taken on a focus of empowered learning and exploration of unknown technologies
in the HTML5 area though not limited too it. So far the exploration has involved the following technologies
Node.js, Web-sockets, Socket.io, Amazon EC2 Cloud Computing, Linux, SSH, BASH, Vim, WebWorkers.

The initial project brief which I wrote turned out to be to simple, the chat client. So I decide to make a
multilayer networked game instead to really get to grips with Websockets, Node.js, socket.io and network
programming in general. Below are some posts on the experiences on developing this game.

Demo
The game demo is available here http://107.21.108.104/NodeProject/index.html

Screenshot

In the screenshot above, the red and white circles are open client connections. (Players) These
players can move around the environment and interact with other players.

Setting up live Node.js server

1

http://socket.io
http://socket.io
http://socket.io
http://107.21.108.104/NodeProject/index.html
http://107.21.108.104/NodeProject/index.html
http://107.21.108.104/NodeProject/index.html
http://107.21.108.104/NodeProject/index.html
http://107.21.108.104/NodeProject/index.html
http://107.21.108.104/NodeProject/index.html
http://107.21.108.104/NodeProject/index.html

Working from local-host is quite limiting as it difficult to test will your code actually work in a deployment
situation. For example simulating latency between various different connections to the server is difficult
since both the clients and server are running from the same machine. So I needed a deployment server
and an elastic IP which I could share with others.

So I have explored the various options of getting a live Node.js server up and running. Initial I though I
could run it off my shared hosting server, that I have with a Carlow based company, Blacknight. Though I
don’t have SSH access to the server because its shared server. Secure Shell (SSH) is a protocol which
allows the secure execution of commands from one computer to another. It gives the sudo user full
access to the machine and allows them to install software, such as Node.js.

Amazon EC2
This is amazons cloud computing solution, they offer a small free package, so I signed up for it.
I was able to create a virtual server and install any OS I wished on it. As I am an Ubuntu Linux user
myself I installed Ubuntu server edition though SSH and went about installing the various compilers and
packages I needed to compile and build Node.js on the server.

Learning out comes
I learnt quite a bit from this process and it took me quite some time to get it all setup. I had never worked
with cloud computing before so it was a fun and very educational experience. All this process was though
SSH, so naturally my UNIX command line skills and knowledge have greatly improved. Heck I even was
using Vim to write most of my code for a day or two. My understanding of how services and ports work in
Linux was greatly improved. I also improved my Bash skills as I wrote some helper scripts for deploying
code to the server. I have a one line command now that, pulls the latest build of my code from the git
repository and starts the node websocket server.

2

Problem: “Syncing JavaScript Objects across clients”
In the game I have been developing, the game requires that the player object for each client be sent
though web-sockets to the Node.js server and broadcast to the other clients. So I went about emitting an
event from the client page once the page loaded, which would send the player object with the event to
the server. The players object was of type Person, which was a javascript prototype object which I had
made. Once this object reached the server it had lost a vital piece of information, its type. It no longer
knew that it was a object of type Person, it was now simply a base javascript object type in the structure
of a Person, but with out the Persons methods etc. Not only that but member variables of the Person
object that were themselves complex types suffered the same fate. How did this amnesia come about?

How the problem accrues?
Well it comes about by the process of data transfer, the objects are converted to JSON to be sent over
the wire, all seems fine, but for one thing. When an object type is JSON.stringifyed its members are
stored as a base javascript object, no meta-data is saved about its type by default.

So when that object is passed around to the clients, they treat it like a normal Person object and call a dot
draw function on it, it throws an erroring saying a draw function is not defined for the object. So how do
we convert this object back to a Person and further still how do we do it in a nice generic way that doesn’t
require boiler plate code to be written for each new member variable of the class?

Approaches/Solutions

Approach I wanted
Since I have been a C-style programmer since I was 15 and working mostly in C/C++ based languages
my solution was to make the wild and unruly JavaScript more like C++, in its class structures. I wanted
a solution that looked like a copy constructor in C++. JavaScript doesn’t have copy construction. So my
solution would be to programmatically create default copy constructors for any class I make. So that it
would look like the approach below.

Other Approaches
I researched various solutions on the Internet, but none could seem to achieve what I wanted. Most
involved boiler plate code. Such as the below sample.

Solution

3

After about 2 or 3 hours messing around with various ways to go about it with as little boiler plate code as
possible, I got on to a winner. Since JavaScript objects are inherently just key/value pairs an object can
be looped over. Also the Person object that had amnesia, still was structured like a Person, it just didn’t
function like a Person. So using this relationship I developed gernic recessive copy function. Below is
a simplified venison of my copy function, without some defensive programming checks removed, so its
easier to explain. Its also an arbitrary example in that a Vector2D only has two members and no member
functions, though its only used to illustrate the point.

The method is simple but extremely powerful and useful in that it handles what would normally result in
boilerplate code in a clean and silent manor.

Explanation
The function takes two objects, the first one is a basically the template or the map, which the oldObjects
members get mapped to. We see on line 27 the call to copy takes the this pointer as the first parameter
which provides the default constructed Vector2D object. We see on line 32 vec1 object is passed as
the second parameter, ordinarily in JavaScript this wouldn’t work, though thanks to the way this object
is constructed and my copy method this functionality works perfectly and the programmer doesn’t need
to worry about it. So the copy method itself loops though the member variables of the object, checks it
they themselves are objects and if so recursively calls copy and if not simple assigns its value to the new
object.
The key to my solution is the fact that JavaScript objects are iterable, in that you can loop over both an
objects member variables and member functions like any collection, as JavaScript objects are inherently
key/value pairs. For more information and detail on how the code is used in practice check out
https://github.com/CiaranMcCann/NodeProject

4

https://github.com/CiaranMcCann/NodeProject
https://github.com/CiaranMcCann/NodeProject
https://github.com/CiaranMcCann/NodeProject
https://github.com/CiaranMcCann/NodeProject
https://github.com/CiaranMcCann/NodeProject
https://github.com/CiaranMcCann/NodeProject
https://github.com/CiaranMcCann/NodeProject
https://github.com/CiaranMcCann/NodeProject
https://github.com/CiaranMcCann/NodeProject

Evaluation
My solution work perfectly and exactly the way I wanted it to work, with no need to compromise.
The solution allows for copy constructor functionality for any Javascript class structure, just by adding one
line function call to the constructor. I’m quite pleased with how clean my solution was. Developing the
solution was also a very culturing experience, as I worked with the syntax and semantics of one language
to mutate it to another language.

Rendering
Rendering using HTML5 canvas is slow, especially when not hardware accelerated. So one most do all
they can to reduce rendering overhead. When I was developing the render system in the Flax HTML5
Game Engine I did extensive research into ways of reducing canvas overheads and ways to render
objects more intelligently.

Some of the easiest optimizes are, just use canvas properly!! Its an OpenGL like implementation of
immediate mode drawing, with a state machine to ogment the drawing. So first off

5

1. Batch draw calls
2. Reduce changes to the state machine
3. Use integer based coordinates - Removes need for anti-aliasing
4. Don’t use shadowBlur

All the above alone will give a massive performance boost, more so the first too then anything else,
though seriously don’t use shadowBlur! Like any rendering system rendering a noise blur pattern is
expensive, though even more so for HTML5 canvas element. There are a lot more canvas optimizations I
use, though they are the main ones.

Smart-rendering
Now onto smart rendering, canvas will render what ever you give it. So you have to be smart about what
you give it and how you determine what you give it. I’m always one for infinite worlds, so a rendering
algorithm that can determine what to draw at said camera position in O (c) is a most! For example with
Flax, I implemented a direct indexing with smooth interpolation between indexes for the titled map. So
that map could be 1 million tiles by 1 million titles and not have a performance hit as direct indexing works
in O (c) constant time. I have become a large fan of direct indexing and use it as much as i can.

Pre-rendering/Level Generation
In this game I’m working on I didn’t need the level environment to change, so instead of direct indexing
I used a pre-rendering technique. My level is rendered to a canvas by reading in an array of characters,
0 being free space and 1 being a wall segment, The algorithm then scans down the rows and columns
of the array to find consecutive wall segment's both vertically and horizontal. These consecutive wall
segments are draw as one long wall, giving a nice effect along with the shadowblur. The below pictures
illustrate how it works. The first image is the ascii array and the second the image the rendered walk
segments.

6

Once my level was rendered to an off screen canvas I used the toDataUrl method from the Canvas API
to get the Canvas image data as a base64 encoded png and layered it over my main canvas, using
CSS to control the positioning of it, allowing it to move and give the impression of a camera following the
character.. Job done, level draw once and not every frame, magic!

Doors
The doors in the level are also generated from the ascii array, the array is scanned for two
conseciative “d” characters vertically and horizontally. Once one is found, a Door object is constructed
with the position data. Then the next one is constructed and the first door is assigned as the partner door,
so when one opens the other opens.

Problems
This method works perfectly on almost any browser that supports HTML5 Canvas tag and API. Though
I have noticed on the mobile verison of browsers, toDataUrl isn’t currently supported. So for the Android
phones/tablets on lower then 2.2 the level will not appear and on iOS5 it doesn’t seem to work. There
is not a major disadvantage as really this functionality is only for development and once the game is
deployed permanently the image that's generated can be saved on the server and not generated every-
time the game is loaded.

7

Problem: “Networking/Physics variable frame-rate”
This is the age old problem, of networking, variable frame-rate. So lets set the sence. we have a server
with multiple connected clients, each client has a game loop. In the game loop we have rendering, logic
update and physics calculations. If one players game loop runs slower then another, that means their
physics calculations will run slow, so that player will move slower in comparison to the other player.
Rendering is generally the one that cause the slow down, where one player may be playing it full-screen
on a low end laptop and another with only half screen size. The smaller resolution, means less rendering
and thus the game loop runs at the set speed and doesn’t drop. The below video will illustrate the
problem better.

Approaches
There are many different approaches to helping to solve and relive this problem.

Threads
One approach is to separate the render loop and the logic loop. In most PC games this is done
by creating a new thread and having the physics run at a solid rate. So for a HTML5 game, we do
have the ability to open whats called a WebWorker and run code asynchronously in a new thread.
Somes problems with this approve is that not all web browsers support WebWorkers.

Sever-side Physics
Another approach would be to move the logic to the server, as the server holds current
information about all clients. So updating each users physics logic on the server and updating
their client side objects. This puts the computing load on the server instead of each client, so
gives all clients an equal playing field. Both requires a lot of game logic and information to move
to the server, and could case visual problems with players walking into walls.

8

Fixed time-interval
This approach is more suited to native PC games or console games. A base line frame-rate is
selected, that most systems will be able to manage. Though with HTML5 games, they operate on
a variety of devices ranging from mobile to PC’s. Though this normally requires scaling back on
features to lower the performance hit.

Solution
As I’m new to network programming I decided to cut back on cost of the game loop and set a fixed time-
interval. So I needed to reduce as much rendering cost on the client side. I documented how I went about
this in the rendering section of this document.

Evaluation
The solution has worked quite well for the moment, though I feel as I add more features to the game this
will become a problem again. I hope to experiment with using WebWorkers to separate the render loop
from the logic and physics loop.

Collision detection
Collision detection always tends to be expensive, in games were there are many collide-able objects,
some static and some dynamic. Over the last few years I have used various methods of collision checking
and collision optimization techniques. From basic box collision, polygon, radius, various bounding volume
solutions, quadtrees, etc. So I decided to try something I had been meaning to experiment with for a
while. A direct indexing collision system for static objects and relatively static items in the enviorment, eg
the walls and doors in the level. So I took what I had used for smart-rendering and applied it for collision
checking.

So for a collision check between a player and a wall segment, the players position is divided by the width
of each tile. Then the Math.floor() function is used to cut off the floating point of the number to yield an
integer, which can be then used to index into the level array, read weather the tile is free or filled with a
wall. If there is a wall segment don’t allow the player to move into that region, so some kind of collision
response is need.
Though this isn’t so simple when their is physic and general gradient movement envoled.

Problems
The method is extremely efficient and only requires 4 collision checks, with no look-up time to find what
should be checked. Though as noticed in the demo, the collision can in some spots be a bit stickily, in
that its not a smooth gradual collision, though this is to be expected with any direct indexing method.

9

10

